Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Surfactant controlled growth of GaInP by organometallic vapor phase epitaxy

Identifieur interne : 012153 ( Main/Repository ); précédent : 012152; suivant : 012154

Surfactant controlled growth of GaInP by organometallic vapor phase epitaxy

Auteurs : RBID : Pascal:00-0154874

Descripteurs français

English descriptors

Abstract

The effect of the surfactant Sb has been studied for GaInP semiconductor alloys grown by organometallic vapor phase epitaxy. Dramatic changes in the optical and electrical properties of GaInP with CuPt ordering have been observed. A small concentration of triethylantimony (TESb) in the vapor is found to cause Sb to accumulate at the surface. In situ surface photoabsorption analysis indicates that Sb changes the surface bonding by replacing the [110] P dimers that are responsible for the formation of the CuPt structure during growth with [110] Sb dimers. As a result, the degree of order for the GaInP layers is decreased, as shown by transmission electron diffraction studies. The 20 K photoluminescence spectra show a 131 meV peak energy increase for GaInP layers grown on vicinal substrates when a small amount of Sb [Sb/P(v)=4×10-4] is added to the system during growth. The use of surfactants to control specific properties of materials is expected to be a powerful tool for producing complex structures. In this article, the growth of heterostructures by modulating the Sb concentration in the vapor is demonstrated. © 2000 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0154874

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Surfactant controlled growth of GaInP by organometallic vapor phase epitaxy</title>
<author>
<name sortKey="Lee, R T" uniqKey="Lee R">R. T. Lee</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Utah</region>
</placeName>
<wicri:cityArea>Department of Materials Science and Engineering, University of Utah, Salt Lake City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shurtleff, J K" uniqKey="Shurtleff J">J. K. Shurtleff</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Utah</region>
</placeName>
<wicri:cityArea>Department of Materials Science and Engineering, University of Utah, Salt Lake City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Fetzer, C M" uniqKey="Fetzer C">C. M. Fetzer</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Utah</region>
</placeName>
<wicri:cityArea>Department of Materials Science and Engineering, University of Utah, Salt Lake City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Stringfellow, G B" uniqKey="Stringfellow G">G. B. Stringfellow</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Utah</region>
</placeName>
<wicri:cityArea>Department of Materials Science and Engineering, University of Utah, Salt Lake City</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Lee, S" uniqKey="Lee S">S. Lee</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Kwangiu Institute of Science and Technology, Kwangju 506-712, Korea</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Materials Science and Engineering, Kwangiu Institute of Science and Technology, Kwangju 506-712</wicri:regionArea>
<wicri:noRegion>Kwangju 506-712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Seong, T Y" uniqKey="Seong T">T. Y. Seong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Materials Science and Engineering, Kwangiu Institute of Science and Technology, Kwangju 506-712, Korea</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Materials Science and Engineering, Kwangiu Institute of Science and Technology, Kwangju 506-712</wicri:regionArea>
<wicri:noRegion>Kwangju 506-712</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0154874</idno>
<date when="2000-04-15">2000-04-15</date>
<idno type="stanalyst">PASCAL 00-0154874 AIP</idno>
<idno type="RBID">Pascal:00-0154874</idno>
<idno type="wicri:Area/Main/Corpus">013767</idno>
<idno type="wicri:Area/Main/Repository">012153</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antimony</term>
<term>Electron diffraction</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>Gallium phosphides</term>
<term>Heterojunctions</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Indium phosphides</term>
<term>MOCVD</term>
<term>Photoluminescence</term>
<term>Semiconductor epitaxial layers</term>
<term>Semiconductor growth</term>
<term>Semiconductor heterojunctions</term>
<term>Surface properties</term>
<term>Surfactants</term>
<term>VPE</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8105D</term>
<term>7361E</term>
<term>7866F</term>
<term>7855C</term>
<term>8115K</term>
<term>8115G</term>
<term>6855J</term>
<term>7340K</term>
<term>Etude expérimentale</term>
<term>Gallium phosphure</term>
<term>Indium phosphure</term>
<term>Agent surface</term>
<term>Epitaxie phase vapeur</term>
<term>Diffraction électron</term>
<term>Photoluminescence</term>
<term>Propriété surface</term>
<term>Hétérojonction</term>
<term>Antimoine</term>
<term>Gallium composé</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Croissance semiconducteur</term>
<term>Méthode MOCVD</term>
<term>Couche épitaxique semiconductrice</term>
<term>Hétérojonction semiconducteur</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Antimoine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of the surfactant Sb has been studied for GaInP semiconductor alloys grown by organometallic vapor phase epitaxy. Dramatic changes in the optical and electrical properties of GaInP with CuPt ordering have been observed. A small concentration of triethylantimony (TESb) in the vapor is found to cause Sb to accumulate at the surface. In situ surface photoabsorption analysis indicates that Sb changes the surface bonding by replacing the [110] P dimers that are responsible for the formation of the CuPt structure during growth with [110] Sb dimers. As a result, the degree of order for the GaInP layers is decreased, as shown by transmission electron diffraction studies. The 20 K photoluminescence spectra show a 131 meV peak energy increase for GaInP layers grown on vicinal substrates when a small amount of Sb [Sb/P(v)=4×10
<sup>-4</sup>
] is added to the system during growth. The use of surfactants to control specific properties of materials is expected to be a powerful tool for producing complex structures. In this article, the growth of heterostructures by modulating the Sb concentration in the vapor is demonstrated. © 2000 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>87</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Surfactant controlled growth of GaInP by organometallic vapor phase epitaxy</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEE (R. T.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SHURTLEFF (J. K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FETZER (C. M.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>STRINGFELLOW (G. B.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>LEE (S.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>SEONG (T. Y.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Materials Science and Engineering, Kwangiu Institute of Science and Technology, Kwangju 506-712, Korea</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>3730-3735</s1>
</fA20>
<fA21>
<s1>2000-04-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2000 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>00-0154874</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The effect of the surfactant Sb has been studied for GaInP semiconductor alloys grown by organometallic vapor phase epitaxy. Dramatic changes in the optical and electrical properties of GaInP with CuPt ordering have been observed. A small concentration of triethylantimony (TESb) in the vapor is found to cause Sb to accumulate at the surface. In situ surface photoabsorption analysis indicates that Sb changes the surface bonding by replacing the [110] P dimers that are responsible for the formation of the CuPt structure during growth with [110] Sb dimers. As a result, the degree of order for the GaInP layers is decreased, as shown by transmission electron diffraction studies. The 20 K photoluminescence spectra show a 131 meV peak energy increase for GaInP layers grown on vicinal substrates when a small amount of Sb [Sb/P(v)=4×10
<sup>-4</sup>
] is added to the system during growth. The use of surfactants to control specific properties of materials is expected to be a powerful tool for producing complex structures. In this article, the growth of heterostructures by modulating the Sb concentration in the vapor is demonstrated. © 2000 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70C61E</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B80A15K</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B60H55J</s0>
</fC02>
<fC02 i1="08" i2="3">
<s0>001B70C40K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8105D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7361E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>8115K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>8115G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>6855J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>7340K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Gallium phosphure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Gallium phosphides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Indium phosphure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Indium phosphides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Agent surface</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Surfactants</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Epitaxie phase vapeur</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>VPE</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Diffraction électron</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Electron diffraction</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Propriété surface</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Surface properties</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Hétérojonction</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Heterojunctions</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Antimoine</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Antimony</s0>
<s2>NC</s2>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>MOCVD</s0>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Couche épitaxique semiconductrice</s0>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Semiconductor epitaxial layers</s0>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
</fC03>
<fN21>
<s1>108</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0014M000298</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 012153 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 012153 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:00-0154874
   |texte=   Surfactant controlled growth of GaInP by organometallic vapor phase epitaxy
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024